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Abstract. From the analysis of (closing value) stock market index like the Dow Jones Industrial average
and the S&P500 it is possible to observe the precursor of a so-called crash. This is shown on the Oct. 1987
and Oct. 1997 cases. The data analysis indicates that the index divergence has followed twice a “universal”
behavior, i.e. a logarithmic dependence, superposed on a well defined oscillation pattern. The prediction
of the crash date is remarkable and can be done two months in advance. In the spirit of phase transition
phenomena, the economic index is said to be analogous to a signal signature found in a two dimensional

fluid of vortices.

PACS. 01.75.4+m Science and society — 89.90.+n Other areas of general interest to physicists

Even though a stock market crash is considered as a highly
unpredictable event, it should be noted that it takes place
systematically during a period of generalized euphory. Are
we able to quantify that euphory? Are we able to observe
precursors of a crash? In the following, we will concentrate
on the numerical aspect of crash precursor analysis, leav-
ing more psychological and economical questions aside. In
August 1997, we performed a series of investigations in
order to emphasize crash precursors. We have used daily
data of stock markets like the Dow Jones Industrial Av-
erage (DJIA) and the Standard & Poor 500 (S&P500). A
strong indication of a crash event or a rupture point in
between the end of October 1997 to mid-November 1997
was numerically discovered [1]. This results from an anal-
ysis of the similarities between two long periods: 1980-87
and 1990-97. For the first period, the analysis was per-
formed on data ending two months before the so-called
Black Monday, i.e. October 19, 1987. For the second pe-
riod, the data was considered till August 20th, 1997. These
two sets of data are drawn in Figures la-b in the case of the
Dow Jones. In both cases, we should note that an anoma-
lous increase of the index exists up to two months before
the crash. The present report supports the idea that this
increase is a precursor of the crash.

The application of statistical physics ideas to the fore-
casting of stock market behavior and crashes has been pro-
posed earlier [2,3] following the pioneer work of physicits
in economy [4-8]. It was proposed that an economic index
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y(t) increases as a complex power law, i.e.

y=A+B<tct_t>

c

x[l—l—Ccos(wln(tCt_t)—l—(ﬁ)} for t<t.

(1)

where t. is the crash-time or rupture point, 4, B, m, C,
w and ¢ are free parameters. This evolution y(¢) is in fact
the real part of a power law divergence at ¢t = ¢, with a
complex exponent m+iw. The law for y(t) diverges at t =
t. with an exponent m while the period of the oscillations
converges to the rupture point at ¢ = t.. This law is similar
to that of critical points at so-called second order phase
transitions [9], and generalizes the scaleless situation for
cases in which discrete scale invariance [10] is presupposed.
This relationship (1) was already proposed in order to fit
experimental measurements of sound wave rate emissions
prior to the rupture of heterogeneous composite stressed
up to failure [11]. The same type of complex power law
behavior has been observed as a precursor of the Kobe
earthquake in Japan [12]. Such log-periodic corrections
have been recently reported in biased diffusion on random
lattices [13].

Fits using equation (1) were already performed on
the S&P500 data [1,2] for the period preceding the 1987
October crash. It should be stressed that the numerical
parameter values are not robust against small data per-
turbations. It is well known indeed that a nonlinear seven
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Fig. 1. The daily evolution of the Dow Jones Industrial Aver-
age: (a) from January 1980 to December 1988 and (b) from
January 1990 to October 1997. The continuous curves are
best fits using a logarithmic divergence, i.e. setting C = 0
in equation (2): (a) A = —4994 + 16.1, B = —532.9 + 5.6,
4" — 87.8540.02 and (b) A = —1919.6£38, B = —1762+13.4,
t& = 97.92 4 0.02. Downward (resp. upward) arrows denote
successive maxima (resp. minima) of the log-periodic oscilla-
tions.

parameter fit is highly unstable from a numerical point
of view [14]. Indeed, suppressing the contribution of the
oscillations in equation (1), i.e. setting C' = 0 and thus
reducing the number of free parameters, implies that the
best fit leads to an exponent m = 0.7 quite larger than
that found in [2], 4.e. m = 0.33 for C' # 0. On the other
hand, in reference [3], various values of m were in fact re-
ported as ranging from 0.53 to 0.06 for various indices and
events (upsurges and crashes).

However, there are strong physical arguments stipu-
lating that m could be or even should be “universal” by
analogy with second order phase transitions [15]. “Univer-
sality” in this case means that the value of m should be
the same for any crash and for any index. In so doing a
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single model should describe the phase transition behav-
ior while the exponent m would define the model and be
the only parameter defining the “universality”. One can
find in the literature on phase transitions a limited set of
exponent values and models appropriate to many given
physical cases [15].

An interesting behavior to be considered is the loga-
rithmic divergence, corresponding to the m = 0 limit. We
propose that the “universal exponent m” is in fact close
to zero, i.e. the divergence of the index y for ¢ close to t.
should be

y=A+Bln (t"t_t)

c

x{l—l—Ccos(wln(tct_t)—i—d))] for t<t..

(2)

This logarithmic behavior is known in physics as charac-
terizing the specific heat (a “four point correlation func-
tion”) of the d = 2 Ising model or the d = 3 XY -model
[4,14,16]. Physically, it represents in the latter case a
transformation from a disordered vortex fluid state with
equal number of vortices with opposite vorticity to an or-
dered state with “particles” composed from a pair of vor-
tices with different polarities. Such a behavior appears in
systems governed by fluid-like contagions [17]. The conta-
gion behavior from a market place to another is of course
the key ingredient leading to a crash. The mean value of
the order parameter is not defined over long-range scales,
but a phase transition nevertheless exists because there
is some ordered state on “small” scales. In addition to
the neat physical interpretation of the relationship (2),
the advantages are found in the facts that (i) the total
number of parameters is reduced by one with respect to
equation (1), and (ii) the log-divergence seems to be closer
to reality than the power-divergence as we show below.

As in critical point data analysis the optimum test
consists in separating the most diverging term from the
others and next searching for the correction to scaling [18].
In order to test the validity of equation (2) in the vicinity
of crashes, we did not fit the data using this 6-parameter
function though. In fact, we have separated the problems
of the divergence itself and the oscillation convergences
on the other hand, in order to extract two values for the
rupture point t.: (i) t4* for the power (or logarithmic)
divergence and (ii) t2°¢ for the oscillation convergence. In
so doing, we examine on both the divergence of the trend
and the convergence of the oscillations.

First, we fitted the two indices using the logarithmic
divergence with only 3 free parameters, i.e. A, B and t3%.
The results of the fits to equations (1, 2) are summarized
in Table 1. A second rupture point ¢2°¢ was estimated by
selecting the successive maxima and the minima of the
oscillations (see the arrows in Figs. 1a-b). Due to the log-
periodicity in equation (2), the following relation

tn—i—l - tn o l (3)

tn —tn—1 A
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Table 1. Fundamental parameters of equations (1-4) found for the DJIA and S&P500 indices for both 1980-87 and 1990-97
periods. Time is expressed in years. The notations for t. are such that e.g. 97.90 means the calendar date corresponding to
the 90-th day of a 100-day year in 1997. The number of open days per year on Wall Street is about 261 days, the exact value
depending on the number of holidays falling on week ends. Two values of t3 correspond to respectively a fit using a logarithmic
divergence (m = 0) and a fit using a power law divergence (m # 0). The true date of the October 1987 crash in the above units
gives t. = 87.79 and for the October 1997 crash is t. = 97.81, i.e. quasi the predicted dates.

index — (period) | t&¥(m =0) | t&*(m #0) A to
DJIA (80-87) 87.85+£0.02 | 88.46 £0.04 | 2.382 £0.123 | 87.91 £0.10
DJIA (90-97) 97.92+0.02 | 98.68 £0.04 | 2.278 £ 0.045 | 97.89 £ 0.06

S&P500 (80-87) | 87.89 +£0.03 | 88.78 £0.05 | 2.528 £0.127 | 87.88 £ 0.07

S&P500 (90-97) | 97.90 4+ 0.02 | 98.67 £ 0.04 | 2.549 +0.163 | 97.85 + 0.08

holds true where A = exp (w/27) and t,—_1, tn, tnt1 are
the successive converging maxima (resp. minima). After
estimating A through equation (3), the rupture point t2%¢
is found from

tn4
tn_Tl .
1
- X

osc __
t.;>" =

(4)

The X and t2°¢ values obtained for the Dow and S&P500
are given in Table 1 for both 1980-87 and 1990-97 periods.
It should be noted that the value of A seems to be also
universal in the sense that this rate of the convergence is
always in the range 2.3—2.5. A discussion about common
values of A for natural phenomena can be found in [10].

Let us now compare both divergence and convergence
laws. It should be stressed that the t2%¢ and t%* values are
closer in the case of a logarithmic divergence (m = 0) than
in the case of a power divergence (m # 0) of references
[2,3]. Both rupture points for m = 0 are consistent with
equation (2), i.e. t2°¢ ~ t3. Moreover, the fits readily
show that stock market indices follow a logarithmic law
divergence. In so doing, the crash of 1987 was re-predicted
within an error of 3 weeks. For the 90-97 period, our results
suggested as early as August 1997 that a crash or a rupture
point was highly probable between the end of October
and mid-November 1997. It should be noted that ¢2°¢ and
" are extreme dates since the index should fall before
it reaches infinity. Taking into account this finiteness of
the indices, our precursor analysis is thus quite relevant
with respect to the crashes of 1987 and 1997. A continuous
follow-up of the data taking into account the oscillations
is thus a neat way of predicting a stock market rupture
point.

Note added after this paper was completed. A preprint
[19] by Laloux et al. discusses that it is hard to pre-
dict financial crashes, based on some lack of reliability
of the data and its subsequent analysis according to vari-
ous authors. One may argue that statistical data analysis
techniques and results (like the nonlinear fits occurring in
critical exponent studies) much depend on practical expe-
rience indeed. To our knowledge, no set of rigorous rules
exists for finding the unique (thus best) solution. More-
over, data analysis requests many points, not always avail-
able for financial matters. About this debate, Stauffer has
argued [20] that we will be dead before observing the 100th

Wall Street crash, i.e. before getting enough data. More-
over, what is a crash [2]? Should we not rather discuss
ruptures [1]? Then, what is a rupture? Beside mathemat-
ical rigor, we conclude/argue that we should use physical
insight [21-24].
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